Skip to main content

Physics and Astronomy Condensed Matter Seminar

Ultimate-density atomic semiconductor via flat phonon bands

Professor Jun Hee Lee

School of Energy and Chemical Engineering

Ulsan National Institute of Science and Technology

South Korea

Title: Ultimate-density atomic semiconductor via flat phonon bands

Abstract: Dispersion-less flat energy bands in momentum space generate localized states and are known to cause unconventional phenomena such as graphene superconductivity in electrons and individual spin flips in magnons. However flat bands in phonon were not discovered yet. For the first time, we discovered flat bands in phonon exist surprisingly in a ferroelectric HfO2 and produce a localized motion of atoms as if their chemical bond temporarily disappears by an external voltage. With the vanishing bond, each atom can be freely displaced by the voltage for the information storage. Our discovery of the atom control directly in a solid will lead us to the design of ultimate-density memory semiconductors reaching up to ~100 TB [1]. Our theory is directly applicable to the Si-compatible HfO2 so can be materialized in all electronic devices [2]. Just as Einstein’s theory of relativity (E=mc2) enabled us to make bombs out of atoms not out of materials, with our “Atomic Semiconductor” we will open the era of designing memories on an atomic scale rather than a materials scale and carrying a data center in the palm of your hand.

 

[1] “Scale-free ferroelectricity driven by flat phonon bands in HfO2”, H.-J. Lee et al., Science 369, 1343 (2020).

 

[2] “A key piece of the ferroelectric hafnia”, B. Noheda et al., Science 369, 1300 (2020).

Date:
-
Location:
Blazer 335
Tags/Keywords:

Ultimate-density atomic semiconductor via flat phonon bands

Professor Jun Hee Lee

School of Energy and Chemical Engineering

Ulsan National Institute of Science and Technology

South Korea

Title: Ultimate-density atomic semiconductor via flat phonon bands

Abstract: Dispersion-less flat energy bands in momentum space generate localized states and are known to cause unconventional phenomena such as graphene superconductivity in electrons and individual spin flips in magnons. However flat bands in phonon were not discovered yet. For the first time, we discovered flat bands in phonon exist surprisingly in a ferroelectric HfO2 and produce a localized motion of atoms as if their chemical bond temporarily disappears by an external voltage. With the vanishing bond, each atom can be freely displaced by the voltage for the information storage. Our discovery of the atom control directly in a solid will lead us to the design of ultimate-density memory semiconductors reaching up to ~100 TB [1]. Our theory is directly applicable to the Si-compatible HfO2 so can be materialized in all electronic devices [2]. Just as Einstein’s theory of relativity (E=mc2) enabled us to make bombs out of atoms not out of materials, with our “Atomic Semiconductor” we will open the era of designing memories on an atomic scale rather than a materials scale and carrying a data center in the palm of your hand.

 

[1] “Scale-free ferroelectricity driven by flat phonon bands in HfO2”, H.-J. Lee et al., Science 369, 1343 (2020).

 

[2] “A key piece of the ferroelectric hafnia”, B. Noheda et al., Science 369, 1300 (2020).

Date:
-
Location:
Blazer 335
Tags/Keywords:

Optical and transport properties of metals with nontrivial band geometry

Professor Dima Pesin

Associate Professor

University of Virginia

Title: Optical and transport properties of metals with nontrivial band geometry

Abstract: I will describe how the geometry of the band structure of metals manifests itself in their optical and transport properties. I particular, I will discuss optical Hall response of chiral crystals in the presence of a DC transport current – the gyrotropic Hall effect – and show that it is related to the Berry curvature dipole. The latter fact makes the gyrotropic Hall effect a diagnostic tool for topological properties of three-dimensional chiral metals. I will also talk about manifestations of band geometry is electron-electron collisions, and the ensuing anomalous Hall effect in the hydrodynamic regime.

Date:
-
Location:
Zoom

Optical and transport properties of metals with nontrivial band geometry

Professor Dima Pesin

Associate Professor

University of Virginia

Title: Optical and transport properties of metals with nontrivial band geometry

Abstract: I will describe how the geometry of the band structure of metals manifests itself in their optical and transport properties. I particular, I will discuss optical Hall response of chiral crystals in the presence of a DC transport current – the gyrotropic Hall effect – and show that it is related to the Berry curvature dipole. The latter fact makes the gyrotropic Hall effect a diagnostic tool for topological properties of three-dimensional chiral metals. I will also talk about manifestations of band geometry is electron-electron collisions, and the ensuing anomalous Hall effect in the hydrodynamic regime.

Date:
-
Location:
Zoom

Strong Coupling Theory of Magic-Angle Graphene

Dr. Eslam Khalaf

University of Texas-Austin

Title: Strong Coupling Theory of Magic-Angle Graphene

Abstract: In this talk, I will review a recently developed strong coupling theory of magic-angle twisted bilayer graphene. An advantage of this approach is that a single formulation can capture the insulating and superconducting states, and with a few simplifying assumptions, can be treated analytically. I begin by reviewing the electronic structure of magic angle graphene’s flat bands, in a limit that exposes their peculiar band topology and geometry. I will show how similarities between the flat bands and the lowest Landau level can provide valuable insights into the effect of interactions and form the basis for an analytic treatment of the problem. At certain fractional fillings, the similarity to Landau level physics suggests a promising route for realizing fractional Chern insulators. At integer fillings, this approach points to flavor ordered insulators, which can be captured by a sigma-model in its ordered phase. Remarkably, topological textures of the sigma model carry electric charge which enables the same theory to describe the doped phases away from integer filling. I will show how this approach can lead to superconductivity on disordering the sigma model, and estimate the Tc for the superconductor. I will highlight the important role played by an effective super-exchange coupling both in pairing and in setting the effective mass of Cooper pairs. At the end, I will show how this theory provides criteria to predict which multilayer graphene stacks are expected to superconduct including the recently discovered alternating twist trilayer platform.

Date:
-
Location:
Blazer 339

Strong Coupling Theory of Magic-Angle Graphene

Dr. Eslam Khalaf

University of Texas-Austin

Title: Strong Coupling Theory of Magic-Angle Graphene

Abstract: In this talk, I will review a recently developed strong coupling theory of magic-angle twisted bilayer graphene. An advantage of this approach is that a single formulation can capture the insulating and superconducting states, and with a few simplifying assumptions, can be treated analytically. I begin by reviewing the electronic structure of magic angle graphene’s flat bands, in a limit that exposes their peculiar band topology and geometry. I will show how similarities between the flat bands and the lowest Landau level can provide valuable insights into the effect of interactions and form the basis for an analytic treatment of the problem. At certain fractional fillings, the similarity to Landau level physics suggests a promising route for realizing fractional Chern insulators. At integer fillings, this approach points to flavor ordered insulators, which can be captured by a sigma-model in its ordered phase. Remarkably, topological textures of the sigma model carry electric charge which enables the same theory to describe the doped phases away from integer filling. I will show how this approach can lead to superconductivity on disordering the sigma model, and estimate the Tc for the superconductor. I will highlight the important role played by an effective super-exchange coupling both in pairing and in setting the effective mass of Cooper pairs. At the end, I will show how this theory provides criteria to predict which multilayer graphene stacks are expected to superconduct including the recently discovered alternating twist trilayer platform.

Date:
-
Location:
Blazer 339

Photophysics of organic materials: from ancient pigments to high-performance organic semiconductors

Oksana Ostroverkhova

Professor of Physics

Oregon State University

Title: Photophysics of organic materials: from ancient pigments to high-performance organic semiconductors

 

Abstract: Organic (opto)electronic materials have been explored in a variety of applications in electronics and photonics. They offer several advantages over traditional silicon technology, including low-cost processing, fabrication of large-area flexible devices, and widely tunable properties through functionalization of the molecules. Over the past decade, remarkable progress in the material design has been made, which led to a considerable boost in performance of organic thin-film transistors, solar cells, and other applications that rely on photophysics and/or (photo)conductive properties of the material. Nevertheless, a number of fundamental questions pertaining to light-matter interactions and charge carrier photogeneration and transport in these materials remain. In this presentation, I will give examples of our efforts aiming to understand and tune exciton, polariton, and charge carrier dynamics in high-performance organic materials and to develop novel, sustainable organic materials.

Date:
-
Location:
Zoom
Tags/Keywords:

Photophysics of organic materials: from ancient pigments to high-performance organic semiconductors

Oksana Ostroverkhova

Professor of Physics

Oregon State University

Title: Photophysics of organic materials: from ancient pigments to high-performance organic semiconductors

 

Abstract: Organic (opto)electronic materials have been explored in a variety of applications in electronics and photonics. They offer several advantages over traditional silicon technology, including low-cost processing, fabrication of large-area flexible devices, and widely tunable properties through functionalization of the molecules. Over the past decade, remarkable progress in the material design has been made, which led to a considerable boost in performance of organic thin-film transistors, solar cells, and other applications that rely on photophysics and/or (photo)conductive properties of the material. Nevertheless, a number of fundamental questions pertaining to light-matter interactions and charge carrier photogeneration and transport in these materials remain. In this presentation, I will give examples of our efforts aiming to understand and tune exciton, polariton, and charge carrier dynamics in high-performance organic materials and to develop novel, sustainable organic materials.

Date:
-
Location:
Zoom
Tags/Keywords: