The environment in which a galaxy lives plays a key role in driving its evolution. As the most tenuously bound component of galaxies, neutral atomic hydrogen (HI) is a valuable tracer of both the interaction history of a galaxy with its environment and a measure of its future star formation potential. As galaxies move from the low-density field to high-density clusters, they lose their gas and star formation is quenched, but how exactly this happens is still poorly understood. In fact, perhaps most galaxies spend a large fraction of their life in the intermediate-density group environment where the signatures of galaxy evolution are more subtle and widely varied. In this talk I will present what my work on both wide-area HI surveys and individual observations have revealed about galaxy evolution, from the low mass group environment to the outskirts of massive galaxy clusters. Statistical studies of the HI provide insight on not only the gas processing and ongoing evolution within galaxy groups, but also the growth of large-scale structure. In addition, I'll present the first of the next generation of HI surveys, Apertif, which is observing 3500 square degrees at 14 times the spatial resolution of previous HI surveys and better HI mass sensitivity. Apertif will allows us to resolve and take the inventory, for the first time, of the physical mechanisms that remove gas from galaxies, across the full range of galaxy environments from poor groups to galaxy clusters.
Zoom Recording: https://uky.zoom.us/rec/share/HyMikMEOik6ZtjHliTbYeOx5-W5k-lH5hemITZcVBqec-w1Tu3rQOD6biC3qSb38.sPUbAc39PoZWKBwu