I will describe the dynamical evolution of a universe containing a single black hole. If the black hole has sufficiently large initial charge, it will be driven very close to extremality by the emission of neutral Hawking radiation, while charged particle emission is exponentially suppressed. At low enough temperatures, quantum gravity becomes important and Hawking-style quantum field theory in curved spacetime calculations give completely incorrect answers, even for simply questions like the energy spectrum of emitted radiation. This leads to interesting new physics, e.g. in certain regimes the dominant radiation channel becomes entangled pairs of photons, as in the “forbidden’’ 2s->1s hydrogen atom transition. By careful analysis of the relevant metric fluctuations, we can calculate the quantum gravity effects in a controlled manner and tell the complete story of the black hole evaporation in both a universe with a matter content similar to ours as well as in a supersymmetric universe.
"The evaporation of charged black holes".
Date:
Location:
CP 179
Speaker(s) / Presenter(s):
Luca Iliesiu, University of California, Berkeley
Event Series: