The most basic characteristic of an electrically insulating system is the absence of charged currents. This property alone guarantees the conservation of the overall dipole moment (i.e., the first multipole moment) in the low-energy sector. It is then natural to inquire about the fate of the transport properties of higher electric multipole moments, such as the quadrupole and octupole moments, and ask what properties of the insulating system can guarantee their conservation. In this talk I will present a suitable refinement of the notion of an insulator by investigating a class of systems that conserve both the total charge and the total dipole moment. In particular, I will consider microscopic models for systems that conserve dipole moments exactly and show that one can divide charge insulators into two new classes: (i) a dipole metal, which is a charge-insulating system that supports dipole-moment currents, or (ii) a dipole insulator which is a charge-insulating system that does not allow dipole currents and thus, conserves an overall quadrupole moment. In the second part of my talk I will discuss a more mathematical description of dipole-conserving systems where I show that a conservation of the overall dipole moment can be naturally attributed to a global 1-form electric U(1) symmetry, which is in direct analogy to how the electric charge conservation is guaranteed by the global U(1) phase-rotation symmetry for electrically charged particles. Finally, this new approach will allow me to construct a topological response action which is especially useful for characterizing Higher-Order Topological phases carrying quantized quadrupole moments
Multipole Insulators and Higher-Form symmetries
Date:
Location:
zoom
Speaker(s) / Presenter(s):
Oleg Dubinkin (UIUC)
Event Series: