Skip to main content

Massive black holes in high-redshift quasar hosts: formation and evolution

Date:
Location:
Blazer Dining 339 (on zoom)
Speaker(s) / Presenter(s):
Alessandro Lupi (UniversitĂ  degli Studi di Milano-Bicocca)

The observations of high redshift quasars up to z~7 tell us that massive black holes (MBHs) were already in place, with masses well above 10^9 solar masses, when the Universe was less than 1 Gyr old. According to Soltan’s argument MBHs gain most of their mass via radiatively efficient accretion, hence we expect they formed early in the Universe as smaller seeds. To date, the common formation mechanism advocated to explain the most massive MBHs at high redshift is the direct collapse scenario, which leads to the formation of seed MBHs of about 10^4-5 Msun. However, because of the peculiar conditions required by this formation mechanism, its plausibility is still debated. After highlighting the main conditions required by this scenario, I will discuss whether the peculiar environment in which high-redshift massive galaxies evolve provides ideal conditions for the formation of such massive seeds, and the processes that may potentially inhibit the process. I will also discuss the subsequent evolution of these protogalaxies and their central MBHs up to the observed masses, a result that strongly depends on the interaction with its galaxy host, and how the MBH obesity found by observations is not necessarily real.

Event Series: