Physics & Astronomy Colloquium

New Ideas for Axion Dark Matter Detection

Dr. Peter Graham

SLAC 

The axion is a well-motivated dark matter candidate, but is challenging to search for. We propose a new way to search for QCD axion and axion-like-particle (ALP) dark matter. Nuclei that are interacting with the background axion dark matter acquire time-varying CP-odd nuclear moments such as an electric dipole moment. In analogy with nuclear magnetic resonance, these moments cause precession of nuclear spins in a material sample in the presence of a background electric field. This precession can be detected through high-precision magnetometry. With current techniques, this experiment has sensitivity to axion masses below 10^-9 eV, corresponding to theoretically well-motivated axion decay constants around the grand unification and Planck scales. With improved magnetometry, this experiment could ultimately cover the entire range of masses below 10^-6 eV, just beyond the region accessible to current axion searches. A discovery in such an experiment would not only reveal the nature of dark matter and confirm the axion as the solution of the strong CP problem, but would also provide a glimpse of physics at the highest energy scales, far beyond what can be directly probed in the laboratory.

 

 

The Proton's Weak Charge

Dr. David Armstrong College of William and Mary

The Proton's Weak Charge One of the highest priorities of present-day experimental particle and nuclear physics is to search for indications of physics which is not contained in the Standard Model. Precision measurements of quantities that are robustly predicted within the Standard Model are an important class of such searches. An example is a measurement of the proton's weak charge. The weak charge is the strength of the proton's vector coupling to the weak neutral current, and its value is a firm prediction of the Standard Model. Thus an experimental test of the prediction is well motivated as a search for new physics. A recently completed experiment at Jefferson Lab, Qweak, has the goal of making the first precision measurement of the weak charge, using parity-violating electron scattering from hydrogen at very low momentum transfer. The result from the first subset of data will be presented, as well as an overview of the data analysis for the full data set and prospects for the final result, which will provide a sensitivity to new physics at the multi-TeV scale.

Studying Neutrino Mass with the Enriched Xenon Observatory (EXO)

THE ABSTRACT Neutrinoless double beta decay (0νββ) is a beyond-the-standard-model physics process in which a nucleus (A,Z) decays to (A,Z+2) with the emission of two electrons (but no neutrinos). Experimental searches for 0νββ are motivated by the access this process gives to testing any Majorana nature of neutrinos and lepton number non-conservation. This process is also a sensitive probe of the absolute neutrino mass scale. EXO (Enriched Xenon Observatory) is an experimental program searching for 0νββ decay of 136Xe. The first phase of the program, EXO-200, uses 200 kg of Xenon enriched to 80% in 136Xe, liquefied in a Time Projection Chamber (TPC) with scintillation readout (100 kg active mass), allowing for event calorimetry and 3D localization of ionizing events. EXO-200 has found the standard two-neutrino decay mode 2νββ of 136Xe, and has made a precision measurement of the (2.172±0.017[stat]±0.060[sys])×1021yr half. The collection of both light and charge signals and the reconstruction of event positions for both single and multi-cluster events allow background discrimination on top of the already low environmental background regime, and the possibility of studying events with extended topologies. A 5-tonne next generation liquid xenon experiment, nEXO, based on teh EXO-200 concept while implementing some notable innovations, is currently being designed. It promises to improve the sensitivity to improve the sensitivity to 0νββ of 136Xe by ~2 orders of magnitude and fully access the inverted hierarchy neutrino mass scale. This talk will discuss the detector performance and recent results from EXO-200 and present the nEXO experiment.

The Galactic Ecosystem: connecting internal structure with formation history

Dr. Rachel Somerville Rutgers University The Galactic Ecosystem: connecting internal structure with formation history It has long been known that galaxies' internal structure is connected with their star formation activity in the nearby universe. Recent surveys have allowed us to study these correlations out to very large distances, allowing us for the first time to quantify these relationships over a significant span of cosmic time for statistically robust samples of objects. It has been known for several years that galaxies are growing in mass and radius, experiencing morphological transformation, and "downsizing" their star formation activity over cosmic time. Now, new observations are painting a picture in which the internal structure of galaxies (size and morphology) is intimately linked with their star formation activity and formation history. There are hints that the co-evolution of supermassive black holes with their host galaxies may be the driving force behind these correlations, but this remains controversial. While cosmological simulations set within the hierarchical formation scenario of Cold Dark Matter currently offer a plausible story for interpreting these observations, many puzzles remain. I will review recent insights gleaned from deep multi-wavelength surveys and state-of-the-art theoretical models and simulations, as well as highlight the open questions and challenges for the future.

Spinors, Strings and Superconductors: Challenges of a new era in Condensed Matter Physics

Dr. Piers Coleman Rutgers University Physics thrives on the strong convection of ideas between the lab and the cosmos, yet each new generation of physicist is surprised as it rediscovers the forgotten fact that discovery cuts across the boundaries of our specialities. Here, I shall argue that recent discoveries in particle, condensed matter and astronomy place us again at extraordinary juncture for a new convection of ideas. I shall try to sketch this pragmatic outlook from a condensed matter physics perspective, using examples drawn from my work and others. How some elegant equations from string theory and gravity led us to discover a novel phase transition in two dimensional Heisenberg magnets; how a discussion with a particle physicist suggested a new way of understanding heavy electron superconductors, and how the discovery of Ising electrons in the "hidden order" material, URu2Si2 suggests a form of order long thought to be forbidden - called "hastatic order".

Hidden Interactions of Quarks

Dr. Bogdan Dobrescu FNAL

The quarks feel all five types of boson-mediated interactions: electromagnetic, strong, weak, Higgs and gravitational. In this talk I will discuss theoretical and experimental constraints on hypothetical new interactions among quarks. Interactions of this type can be hidden if they have a very short range, or if they are very weak, or by other mechanisms such as momentum-dependent couplings. A related question is how strongly can quarks interact with dark matter.

Discovery of New and Old Thermoelectrics using First Principles Methods

 

 

Dr. David Singh Oak Ridge National Labs

There is increasing interest in thermoelectric materials motivated in part by recent progress and in part by the potential of these materials in various energy technologies. Thermoelectric performance is a multiply contra-indicated property of matter. For example, it requires (1) high thermopower and high electrical conductivity, (2) high electrical conductivity and low thermal conductivity and (3) low thermal conductivity and high melting point. The keys to progress are finding an optimal balance and finding ways of using complex electronic and phononic structures to avoid the counter-indications mentioned above. In this talk, I discuss some of the issues involved in the context of recent results. One key aspect is optimization of the doping level in a given thermoelectric material. While this has long been understood in terms of standard semiconductor parabolic band models, we find surprisingly different results for many thermoelectric materials when the actual first principles band structures are used. This has led to prediction of a number of useful thermoelectrics, some that are new, and surprisingly some that are old. This work was done in collaboration with David Parker, Xin Chen, Olivier Delaire and Mao-Hua Du and was supported by the Department of Energy through the S3TEC Energy Frontier Research Center.

 

 

The Astrophysics of Black Hole Spin

 

 

Dr. Reynolds University of Maryland In addition to providing vital clues as to the formation and evolution of black holes, the spin of black holes may be an important energy source in the Universe. Over the past couple of years, tremendous progress has been made in the realm of observational measurements of spin. I will describe these efforts with particular focus on the use of X-ray spectroscopy to probe the spin of supermassive black holes in active galactic nuclei (AGN). For the first time, we are obtaining hints about the distribution of spins across the population of supermassive black holes with some interesting and unexpected consequences. After discussing spin, I will also address questions related to the driving of relativistic jets from AGN and the jet-disk connection. I shall conclude by discussing future prospects enabled by Astro-H (to be launched in 2015) and LOFT/ATHENA+ (currently under consideration by ESA).

 

 

The Radon EDM Experiment

 

 

Dr. Tim Chupp University of Michigan A permanent electric dipole moment (EDM) of a particle or system would arise due to breaking of time-reversal (T), or equivalently charge-conjugation/parity (CP) symmetry. Over the past five decades, a number of experiments on the neutron, atoms and molecules have only set upper limits on EDMs, and the search continues, motivated in large part by the expectation that beyond Standard-Model physics CP violation is required to explain the baryon asymmetry of the universe. In addition, new techniques and access to systems in which the effects of CP violation would be greatly enhanced are driving the field forward. Systems that may be favorable for significant advances include the isotopes 225Ra and 221/223Rn, where the combination of significant octupole collectivity and relatively closely spaced opposite parity levels would increase the nuclear Schiff moment by orders of magnitude compared to other diamagnetic atoms, i.e. 199Hg. A number of technical and nuclear-structure issues must be addressed in order to assess the prospects for an experiment of significant impact. Among the technical challenges for the Radon-EDM program are developing an on-line EDM experiment at an isotope-production facility that will collect and make measurements on the short-lived species (half lives are approximately 25 min). We have developed and tested a system for high-efficiency collection and spin-exchange polarization of noble-gas isotopes that has been tested at the TRIUMF ISAC facility (experiment S929). Radon polarization techniques were studied at ISOLDE and Stony Brook, and spin-precession detection techniques are under development. Nuclear-structure issues include determining the octupole collectivity as well as the spacing of opposite parity levels. A series of experiments at ISOLDE (IS475 and IS552) have recently directly measured octupole collectivity in 220Rn and 224Ra leading to strengthened confidence in conclusions about the octupole enhancements. Experiments are also underway at NSCL at Michigan State University TRIUMF/ISAC to study the nuclear structure of isotopes in this mass region. I will report on progress on all these fronts and discuss recent developments in our studies of how we learn about the basic physical parameters of CP violation from the suite of EDM measurements.

 

 

Galaxy Build-up at Cosmic Dawn: New Insights from Ultra-Deep Hubble and Spitzer Observations

Dr. Pascal Oesch Space Telescope Science Institute

Thanks to ultra-deep observations with the WFC3/IR camera on Hubble the frontier of galaxies has recently been pushed out to z~9-12, only ~450 Myr from the Big Bang. From several large Hubble programs such as the HUDF09, CANDELS, or CLASH, we were able to identify large samples of more than 200 galaxies at z~7-8, and we are now starting to build up the sample sizes of z~9-11 galaxy candidates. In particular, the recent HUDF12 campaign further increased the depth of the WFC3/IR dataset over the Hubble Ultra-Deep Field (HUDF), and enabled us to detect a sample of nine very faint z>8 galaxy candidates in the HUDF. Additionally, the newly completed CANDELS data over GOODS-North now revealed four relatively bright z~9-10 sources, which are in tension with the previous UV LF determination from the GOODS-South field, indicating that star-formation in the early universe might have been very stochastic. Using all z>8 candidates in and around both GOODS fields, we infer that the cosmic star-formation rate density in galaxies with SFR>0.7Msol/yr decreases rapidly at z>8, dropping by an order of magnitude from z~8 to z~10. With complementing, ultra-deep Spitzer IRAC data, we are additionally able to infer the stellar mass densities out to z~8-10. In this talk I will highlight recent progress in exploring the high redshift frontier and in understanding the growth of galaxies in the first two billion years. In particular, I will present current constraints on the UV luminosity function of galaxies at z>8, and I will demonstrate the power of combining deep Hubble and Spitzer data to directly track the star-formation and mass build-up of z>=4 galaxies.

 

 

Pages

Subscribe to RSS - Physics & Astronomy Colloquium
X
Enter your linkblue username.
Enter your linkblue password.
Secure Login

This login is SSL protected

Loading