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We mathematize the physical intuition that a macroscopic system near equilibrium that does not
thermalize as easily will show greater fluctuations in an experiment.

I. INTRODUCTION

Let us be given a macroscopic system and we would like
to measure in the laboratory the fluctuations of the sys-
tem. E.g. let us have a colloidal suspension, and we mea-
sure the fluctuations in a constituent particle’s position
x(t) by tracking the trajectory of a sample constituent

particle and then computing ∆x2 =
∫ Tex

0
(x(t) − x2). O

indicates time-average over the course of the experiment.
Let us assume that the duration of the experiment Tex is
much much greater than all the microscopic time-scales.
If the system is at equilibrium throughout the duration of
the experiment, then we apply the Ergodic hypothesis to
assert that O = 〈O〉 ≡

∫
Ω
Oe−H/

∫
Ω
e−H . Ω denotes the

phase space, and the observable O and the Hamiltonian
H are functions of the phase space variables {xi, pi}. i
is an index for the constituent particles. It is under-
stood that {xi, pi} is a place-holder for all the degrees of
freedom of all the constituent particles. Generically in
equilibrium, we expect that the equilibrium “thermal”
fluctuations in position ∆x to be greater if temperature
is raised in the experiment.

We can easily imagine situations where the above equi-
librium picture does not fully apply. A big arena is biol-
ogy where many processes are not at equilibrium. Non-
living examples may be experiments away from equilib-
rium in say classical or quantum fluids, or cold atomic
gases. We aim to show in this article that for such
non-equilibrium situations, if a macroscopic system is in-
efficient at thermalization – approaching thermal equi-
librium when away from equilibrium through its inter-
nal dynamics –, then it will exhibit greater fluctuations
in general. This is intuitive : imagine an extreme ex-
ample where there is a “non-equilibrium kick” during
an experiment, in an already equilibrated system and
some observable O moves very far away from its equi-
librium average 〈O〉. Very far way is quantified by how
far away is O from 〈O〉 in units of equilibrium fluctua-

tions, (O − 〈O〉)/
√
〈∆O2〉. After the “non-equilibrium

kick event”, O again moves in time towards its equilib-
rium in some manner during (re-)thermalization. Now
it is obvious that if this movement towards equilibrium
is slow, then the time average of that observable O over
Tex will be greater than if this movement is fast. We will
mathematize this picture and the notion of the “non-
equilibrium kick event” will be used in an integral way
in order to do this.

We first show in Sec. II, the relation between fluc-
tuations and thermalization in the somewhat fictitious

quench-type scenario when only one non-equilibrium kick
event occurs during the whole duration of the experi-
ment. This will allow us to associate a time-scale with
thermalization dynamics. Then in Sec. III we general-
ize to the more realistic scenario with many kick events
occurring during the experiment. We will still simplify
for tractability that the many kick events happen in a
Poissonian fashion, which is not fully realistic.

II. ONE KICK EVENT

At equilibrium, the probability density of a macro-
scopic system in the vicinity of a phase space
point {xi, pi} is given by the Boltzmann distri-
bution Peq({xi, pi}) = e−H({xi,pi})/kT /Z with the

partition sum Z =
∫

Ω
d{xi, pi} e−H({xi,pi})/kT .

Therefore
∫

Ω
d{xi, pi} Peq({xi, pi}) = 1. The

equilibrium value of some observable O is
〈O〉eq =

∫
Ω
d{xi, pi} Peq({xi, pi}) O({xi, pi}) and

its equilibrium thermal fluctuations is 〈∆O2〉eq =∫
Ω
d{xi, pi} Peq({xi, pi}) (O({xi, pi}) − 〈O〉eq)2. If

the system remains at equilibrium throughout the
experiment, then we would measure for that observable
O its average and fluctuations to be O = 〈O〉eq and

∆O2 = 〈∆O2〉eq.
Let there be a non-equilibrium kick event at the

start of the experiment t = 0 such that the non-
equilibrium distribution of the phase space variables is
deviated away from equilibrium distribution Peq({xi, pi})
to Pneq({xi, pi}; t = 0). Pneq evolves with time t as
the system approaches equilibrium during thermaliza-
tion. Now we make an assumption regarding the internal
dynamics that leads to thermalization. We make this as-
sumption to give a (mathematical) idealization to ther-
malization. The approach to equilibrium is assumed to
be of the following form

dPneq({xi, pi}; t)
dt

= −Pneq({xi, pi}; t)− Peq({xi, pi})
Tth

(1)

Tth is a time-scale that captures the scale of the assumed
thermalization dynamics. This dynamics can be called
“linear response” since the system responds to the non-
equilibrium kick in a fashion that is linear in deviation
from equilibrium. It is straightforward to write down the
closed-form solution of Eq. 1 as

Pneq(t) = Peq + (Pneq(0)− Peq) e−t/Tth (2)



2

In the above equation and in the following, we suppress
the phase-space argument {xi, pi} for brevity when there
is no confusion.

Given this dynamics, we may write the following non-
equilibrium average 〈O〉neq(t) =

∫
Ω
Pneq(t) O and non-

equilibrium fluctuations 〈∆O2〉neq(t) =
∫

Ω
Pneq(t) (O −

〈O〉neq(t))2. In writing this, we have made the critical
assumption of “quasi-ergodicity” where the macroscopic
system is visiting the phase space in a quasi-ergodic way
so that some ensemble distribution Pneq can be applied
to describe the non-equilibrium situation for some time
window, and thus calculate non-equilibrium average and
fluctuations. We posit that this assumption might be
safely applied when the thermalization time-scale Tth is
much bigger than the microscopic time-scales of the sys-
tem. Thus we have

〈O〉neq(t) = 〈O〉eq + (〈O〉neq(0)− 〈O〉eq)e−t/Tth (3a)

〈∆O2〉neq(t) = 〈∆O2〉eq(1− e−t/Tth) (3b)

+ 〈∆O2〉neq(0) e−t/Tth

+ (〈O〉neq(0)− 〈O〉eq)2e−t/Tth(1− e−t/Tth)

As t → ∞, 〈O〉neq(t) → 〈O〉eq and 〈∆O2〉neq(t) →
〈∆O2〉eq signaling the (exponential) completion of ther-
malization.

The quasi-ergodicity assumption will now allow us to
replace the instantaneous values of an observable O(t)
by its (non-equilibrium) ensemble averages appropriate
to the right time window while doing the experimental
time average. If we label the quasi-ergodic time window
in which some ensemble distribution can be applied to
calculate averages as Tqe and the (biggest) microscopic
time-scale as Tmic, then the arguments below apply when
Tmic � Tqe � Tth and Tmic � Tqe � Tex.

The average that gets measured in the experiment
would be

O =
1

Tex

∫ Tex

0

dt O(t)

→ under quasi-ergodicity

∼=
1

Tex

∫ Tex

0

dt 〈O〉neq(t)

= 〈O〉eq + (〈O〉neq(0)− 〈O〉eq)
Tth

Tex
(1− e−Tex/Tth)

→ Tex � Tth

≈ 〈O〉eq +
Tth

Tex
〈O〉neq(0) (4)

The fluctuations that get measured in the experiment
would be

∆O2 =
1

Tex

∫ Tex

0

dt (O(t)−O)2

→ under quasi-ergodicity

∼=
1

Tex

∫ Tex

0

dt 〈∆O2〉neq(t)

= 〈∆O2〉eq

(
1− Tth

Tex
(1− e−Tex/Tth)

)
+ 〈∆O2〉neq(0)

Tth

Tex
(1− e−Tex/Tth)

+ (〈O〉neq(0)− 〈O〉eq)2 Tth

Tex
×(

(1− e−Tex/Tth)− 1

2
(1− e−2Tex/Tth)

)
→ Tex � Tth

= 〈∆O2〉eq +
Tth

Tex

(
〈∆O2〉neq(0) +

1

2
(〈O〉neq(0)− 〈O〉eq)2

)
(5)

The above equation already contains our basic
intuition, i.e. if Tth is comparable to Tex then the
measured fluctuations ∆O2 will be greater than
equilibrium fluctuations 〈∆O2〉eq and will be big-

ger in magnitude for larger Tth

Tex
. In the following

section, we will generalize to a more realistic scenario
with many kick events.

III. MANY KICK EVENTS

IV. REMARKS

• Discuss non-equilibrium kick events in physical
terms.

• Treat the kick events as a Poissonian process for
mathematical tractability.

• Treatment of kick events as a Poissonian process
will introduce a new time scale associated with the
average rate of these kicks (which is physically well-
motivated as well).
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