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We mathematize the physical intuition that a macroscopic system near equilibrium that does not
thermalize as easily will show greater fluctuations in an experiment.

I. INTRODUCTION

Let us be given a macroscopic system and we would like
to measure in the laboratory the fluctuations of the sys-
tem. E.g. let us have a colloidal suspension, and we mea-
sure the fluctuations in a constituent particle’s position
z(t) by tracking the trajectory of a sample constituent
particle and then computing Az2? = fOTe" (x(t) —7%). O
indicates time-average over the course of the experiment.
Let us assume that the duration of the experiment T,y is
much much greater than all the microscopic time-scales.
If the system is at equilibrium throughout the duration of
the experiment, then we apply the Ergodic hypothesis to
assert that O = (0) = [,0e "/ [ e™". Q denotes the
phase space, and the observable O and the Hamiltonian
H are functions of the phase space variables {z;,p;}. @
is an index for the constituent particles. It is under-
stood that {z;,p;} is a place-holder for all the degrees of
freedom of all the constituent particles. Generically in
equilibrium, we expect that the equilibrium “thermal”
fluctuations in position Az to be greater if temperature
is raised in the experiment.

We can easily imagine situations where the above equi-
librium picture does not fully apply. A big arena is biol-
ogy where many processes are not at equilibrium. Non-
living examples may be experiments away from equilib-
rium in say classical or quantum fluids, or cold atomic
gases. We aim to show in this article that for such
non-equilibrium situations, if a macroscopic system is in-
efficient at thermalization — approaching thermal equi-
librium when away from equilibrium through its inter-
nal dynamics —, then it will exhibit greater fluctuations
in general. This is intuitive : imagine an extreme ex-
ample where there is a “non-equilibrium kick” during
an experiment, in an already equilibrated system and
some observable O moves very far away from its equi-
librium average (O). Very far way is quantified by how
far away is O from (O) in units of equilibrium fluctua-
tions, (O — (0))/+/(AO?). After the “non-equilibrium
kick event”, O again moves in time towards its equilib-
rium in some manner during (re-)thermalization. Now
it is obvious that if this movement towards equilibrium
is slow, then the time average of that observable O over
Tex will be greater than if this movement is fast. We will
mathematize this picture and the notion of the “non-
equilibrium kick event” will be used in an integral way
in order to do this.

We first show in Sec. |H|, the relation between fluc-
tuations and thermalization in the somewhat fictitious

quench-type scenario when only one non-equilibrium kick
event occurs during the whole duration of the experi-
ment. This will allow us to associate a time-scale with
thermalization dynamics. Then in Sec. [[II] we general-
ize to the more realistic scenario with many kick events
occurring during the experiment. We will still simplify
for tractability that the many kick events happen in a
Poissonian fashion, which is not fully realistic.

II. ONE KICK EVENT

At equilibrium, the probability density of a macro-
scopic system in the vicinity of a phase space
point {z;,p;} is given by the Boltzmann distri-
bution Po({zi,pi}) = e HUzp/AT /7 ith the
partition sum Z = [, d{z;,p;} e HUzop)/RT
Therefore fQ d{l‘i,pi} Peq({.flii,pi}) = 1. The
equilibrium  value of some observable O is
(Oeq = Jod{zi,pi} Peq({zi,pi}) O({wi,pi}) and
its equilibrium thermal fluctuations is (AO?%)., =
Jo d{zi,pi} Peq({zispi}) (O({zi,pi}) — (O)eq)® If
the system remains at equilibrium throughout the
experiment, then we would measure for that observable
O its average and fluctuations to be O = (O)qq and
AO? = (AO?) .

Let there be a non-equilibrium kick event at the
start of the experiment ¢ = 0 such that the non-
equilibrium distribution of the phase space variables is
deviated away from equilibrium distribution Peq({zs, pi})
t0 Ppeq({Zi, pi};t = 0). Pheq evolves with time ¢ as
the system approaches equilibrium during thermaliza-
tion. Now we make an assumption regarding the internal
dynamics that leads to thermalization. We make this as-
sumption to give a (mathematical) idealization to ther-
malization. The approach to equilibrium is assumed to
be of the following form

dPneq({fEiapi};t) _Pneq({xivpi};t) - Peq({xivpi})

(1)

dt Tth
Tin is a time-scale that captures the scale of the assumed
thermalization dynamics. This dynamics can be called
“linear response” since the system responds to the non-
equilibrium kick in a fashion that is linear in deviation
from equilibrium. It is straightforward to write down the
closed-form solution of Eq. |1} as

Pneq(t) = Peq + (Pneq(o) — Peq) e_t/Tth (2)



In the above equation and in the following, we suppress
the phase-space argument {z;,p;} for brevity when there
is no confusion.

Given this dynamics, we may write the following non-
equilibrium average (O)neq(t) = [, Paeq(t) O and non-
equilibrium fluctuations (AO?),eq(t) = [ Paeq(t) (O —
(O)neq(t))?. In writing this, we have made the critical
assumption of “quasi-ergodicity” where the macroscopic
system is visiting the phase space in a quasi-ergodic way
so that some ensemble distribution P,.q can be applied
to describe the non-equilibrium situation for some time
window, and thus calculate non-equilibrium average and
fluctuations. We posit that this assumption might be
safely applied when the thermalization time-scale Tty is
much bigger than the microscopic time-scales of the sys-
tem. Thus we have

{O)neq(t) = (O)eq + ((Ohneq(0) = (O)eq)e ™"/ (3a)

(
(AO

(AO?)1eq(t) = (AO?)eq(1 — et/ Tin) (3b)
+ (AO?) 1eq(0) e~/ Tt
+ ((O)1eq(0) — (O)eq)2e™t/Tin (1 — ¢=t/Tin)

As t = 00, (O)neq(t) = (O)eq and (AO?)peq(t) —
(AO?)q signaling the (exponential) completion of ther-
malization.

The quasi-ergodicity assumption will now allow us to
replace the instantaneous values of an observable O(t)
by its (non-equilibrium) ensemble averages appropriate
to the right time window while doing the experimental
time average. If we label the quasi-ergodic time window
in which some ensemble distribution can be applied to
calculate averages as Tq. and the (biggest) microscopic
time-scale as Thc, then the arguments below apply when
Tnic € Tqe < Tin and Tie < The < Tox-

The average that gets measured in the experiment
would be

o 1 Tex
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2 (O)eq + Tin (O)neq(0) (4)
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The fluctuations that get measured in the experiment
would be
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The above equation already contains our basic
intuition, i.e. if T}, is comparable to T.x then the
measured fluctuations AO? will be greater than
equilibrium fluctuations (AO?)., and will be big-
ger in magnitude for larger % In the following
section, we will generalize to a more realistic scenario

with many kick events.

III. MANY KICK EVENTS
IV. REMARKS

e Discuss non-equilibrium kick events in physical
terms.

e Treat the kick events as a Poissonian process for
mathematical tractability.

e Treatment of kick events as a Poissonian process
will introduce a new time scale associated with the
average rate of these kicks (which is physically well-
motivated as well).
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