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In these notes we describe the generalization of Renormalized Mean-field theory for SU(2) fermions
to the case of general SU(N) fermions. This brings in N − 1 Gutzwiller variational parameters.

PACS numbers:

The first two sections deal with formalism and so can
apply to other lattices and hopping terms as well. We
use Bernal stack as an example to set up the discussions.

The SU(N = 2) Hamiltonian that can model Bernal
stacked bilayer Graphene is

H = T + V

T = −t
∑

intra-layer{r,r′},σ

c†r,σcr′,σ + h.c.

− tp
∑

inter-layer{r,r′},σ

c†r,σcr′,σ + h.c.

V =
∑
r

Ur nr,↑nr,↓ (1)

Let us be at half-filling in the grand-canonical ensemble,
i.e. µ = 0. We would like to study SU(N) for general N
to compare to QMC numerics, for which the Hamiltonian
be written as

H = T + V

T = −t
∑

intra-layer{r,r′},σ

c†r,σcr′,σ + h.c.

− tp
∑

inter-layer{r,r′},σ

c†r,σcr′,σ + h.c.

V =
∑
r

∑
{P(σ1,σ2)}

Ur nr,σ1nr,σ2 (2)

where σ is a flavour index now which runs from 1
to N . {P(σ1, σ2)} denotes the set of unique permu-
tation of two flavors. For N = 4, they would be
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. The size of this
permutation set is (N, 2) = N(N − 1)/2.

The non-interacting kinetic/hopping part of H in Eq.
1 or 2 hosts quadratic band touching for each spin or
flavour species. The on-site interaction or Hubbard term
is marginal from power counting in two dimensions. So a
primary question is whether the quadratic band touching
survives or is stable for weak but non-zero Hubbard term,
or does a gap open up as soon as the Hubbard term
becomes 0+.

I. LARGE-N MEAN FIELD THEORY

To answer this question with mean-field theory, one
would like to perform a mean-field theory for weak U .

The usual mean-field approaches starting with Affleck,
Marston in late 80s are designed instead for the strong
or infinite U limit, where a t-J description can be supple-
mented and large-N MFT fruitfully applied. What does
large-N MFT say for the weak U limit of Eq. 2 ?

Let us suppose a mean-field ansatz for decoupling the
Hubbard term as a mean-field 〈nr, σ〉 = ar,σ. Using this
to decouple the Hubbard term, we get

U
∑
r

∑
σ

nr,σ
∑
σ′ 6=σ

〈nr,σ′〉 (3)

We do not consider the superconducting (presumed to
be zero for weak repulsive interaction) and spin-flip type
mean-field decouplings. To proceed, we use the half-
filling constraint ∑

σ

〈nr,σ〉 =
N

2
(4)

to re-write the decoupled Hubbard term in Eq. 3 as

U
∑
r

∑
σ

nr,σ

(
N

2
− 〈nr,σ〉

)
(5)

Since 〈nr, σ〉 ∈ [0, 1], therefore in the N → ∞ limit,
N/2−〈nr, σ〉 → N/2. This is a trivial shift to the chemi-
cal potential for each flavour that is equal (UN/2) for all
flavours. Thus, large-N MFT predicts no gap opening in
the quadratic band touching for weak U . Of course, this
prediction need not be correct for finite N . So we would
like to have a MFT for fixed N .

For the other limit of strong U , we can expect a VBS
type state for large-N MFT again through the lens of
Heisenberg exchange physics.

II. UNRESTRICTED RENORMALIZED MEAN
FIELD THEORY (RMFT)

A. Basic Formalism

In this section we generalize to any N the SU(2) for-
mulation of Gutzwiller projected type MFT by Wang et
al1 called RMFT , in order to do a fixed N MFT in the
weak U . The approach can be applied to any U . This
approach will actually be most useful in the strong U
limit where the suppression of charge fluctuations due to
interactions becomes especially significant. In the weak
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U it will have smaller returns in terms of gain in total
ground state energy for the MFT ansatz compared to
RMFT ansatz. (We foresee presently that RMFT formu-
lation might still be technically useful for stabilization of
Dimer type orders which have modulation in the bond
energies at weak-coupling.)

Eq. 3 of Wang et al gives a generalized projector for
the SU(2) to do the Gutzwiller projection

Pr = F0,r + yrF1,r + ηry
2
rF2,r (6)

where r is a lattice site index (we may suppress if it is not
confusing in the following), Fn,r are nth-occupation pro-
jective operators (i.e. they project a ket/bra to the sub-
space of site occupation n without re-normalizing; also
they act as identity on other sites). For spin-1/2 SU(2),
they are more explicitly F0,r = (1−nr,↑)(1−nr,↓) (called
Er in their notation), F1,r =

∑
σ nr,σ(1 − nr,−σ) (called

Qr (Q ??)) and F2,r = nr,↑nr,↓ (called Dr). ηr is varia-
tional parameter, and yr is like a fugacity parameter. Pr
is Hermitian.

If |ψ0〉 is an un-projected mean-field ansatz, then |ψ〉 =∏
r Pr|ψ0〉 is the (un-normalized) generalized Gutzwiller

projected ansatz. The possibility of r/spatial depen-
dence in the mean-field ansatz is referred to as “unre-
stricted” by Wang et al. For our purposes, we do not
foresee the use of this “unrestricted” feature, but we
retain the r index in this formalism section for com-
pleteness. The “restricted” version without spatial de-
pendence is much older2,3 motivated by Mott Insulator
physics when the importance of disorder to the High Tc
problem was likely not yet realized. Ref. 1 was pre-
cisely motivated by this issue of (impurity) disorder for
Cuprates. Eq. 6 thus can be contrasted to the origi-
nal Gutzwiller projection of the form

∏
r(1− αF2,r)|ψ0〉

where α is a spatially uniform variational parameter.
The idea behind the fugacity parameter yr is to ensure
that the charge density is unchanged by the projection,
i.e. 〈ψ0|

∑
σ nr,σ|ψ0〉 = 〈ψ|

∑
σ nr,σ|ψ〉/〈ψ|ψ〉 even as ηr

parameter is variationally tuned. The motivation be-
hind this maneuver is that it allows to directly view the
projected ansatz |ψ〉 as a “renormalized” version of the
un-projected ansatz |ψ0〉, and thus to infer clearly the
physics of |ψ〉 from that of |ψ0〉 which is posited at the
mean-field level, in the spirit of Fermi Liquid theory. This
is a very appealing property of this scheme.

For SU(N) with N -flavors of fermions at each site, we
can generalize Eq. 6 naturally to

Pr = F0,r + yrF1,r + f2,ry
2
rF2,r + f3,ry

3
rF3,r + . . .

=

N∑
i=0

fi,ry
i
rFi,r (7)

where now we have N−1 variational parameters {fi}, i ∈
{2, 3, . . . , N}, and f0,r = f1,r = 1 are fixed constants. For
the case of N flavors, the explicit forms for Fn,r general-

ized from the N = 2 case are

F0,r =
∏
σ

(1− nr,σ)

F1,r =
∑
σ

∏
σ′ 6=σ

(1− nr,σ′)

nr,σ

F2,r =
∑

σ,σ′ 6=σ

 ∏
σ′′ 6={σ,σ′}

(1− nr,σ′)

nr,σnr,σ′

...

FN,r =
∏
σ

nr,σ (8)

where the σ flavour indices is understood to always run
from 1 to N . A more compact way to write the same is

Fi,r ≡ δi,∑σ nr,σ
≡ δ(i,

∑
σ

nr,σ) (9)

keeping in mind the (projective) operator nature of the
expression.

Notation : Let |ψ0〉 be the normalized unprojected

mean-field ansatz. 〈Ô〉0 = 〈ψ0|Ô|ψ0〉, and 〈ψ0|ψ0〉 = 1.
Let |ψ〉 be projected un-normalized mean-field ansatz,

i.e. |ψ〉 =
∏
r Pr|ψ0〉 ≡ P|ψ0〉. 〈Ô〉 = 〈ψ|Ô|ψ〉/〈ψ|ψ〉 =

〈ψ0|PÔP|ψ0〉/〈ψ0|P2|ψ0〉 = 〈PÔP〉0/〈P2〉0.

Gutzwiller approximation : While evaluat-
ing the expectation values of the projection
operators, inter-site correlations are ignored.
This is in-built by writing the variational pa-
rameter associated with a multi-site Gutzwiller
projection in a factorizable form, i.e.

fgenerali1,r1;i2,r2;...Fi1,r1Fi2,r2 . . . ≡
(
fi1,r1y

i1
r1Fi1,r1

) (
fi2,r2y

i2
r2Fi2,r2

)
. . .

(10)

Given a mean-field ansatz |ψ0〉, we can evaluate
〈Fi,r〉0 (N + 1 in number). Given variational parameters
{fi,r}, we would like to evaluate 〈Fi,r〉 (again N + 1
in number). yr is fixed by equaling projected and
unprojected charge densities.

The first step by Wang et al is to eliminate the fugacity
parameter yr as follows : since Pr is linear combination

of projection operators, therefore P2
r =

∑N
i=0 f

2
i,ry

2i
r Fi,r

as the cross-terms like Fi,rFj,r are zero at operator level
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(and F 2
i,r = Fi,r). We thus have

〈P2〉0 =

〈(∏
r

Pr

)2〉
0

=

〈∏
r

P2
r

〉
0

→ Gutzwiller approximation

→
∏
r

〈
P2
r

〉
0

(11)

where
〈
P2
r

〉
0

=
∑N
i=0 f

2
i,ry

2i
r 〈Fi,r〉0. Therefore,

〈Fi,r〉 =
〈PFi,rP〉0
〈P2〉0

=
〈(
∏
r1 Pr1)Fi,r (

∏
r2 Pr2)〉

0∏
r1 〈P2

r1〉0
→ Gutzwiller approximation in numerator

→
〈PrFi,rPr〉0

∏
r16=r

〈
P2
r1

〉
0∏

r1 〈P2
r1〉0

=⇒

〈Fi,r〉 = f2i,ry
2i
r

〈Fi,r〉0
〈P2

r 〉0
(12)

where again in the numerator we have set the various
cross-terms to zero. For N = 2, Wang et al reduce the
N + 1 = 3 equations of Eq. 12 to get the following
N − 1 = 1 equation,

〈Fi−1,r〉〈Fi+1,r〉
〈Fi,r〉2

=
f2i−1,rf

2
i+1,r

f4i,r

〈Fi−1,r〉0〈Fi+1,r〉0
〈Fi,r〉20

(13)

≡ ci,r

with i = 1 for N = 2, where the right hand side is now
a number for each r given by our mean-field ansatz |ψ0〉
and the unrestricted variational parameters {fi,r}, in the
process eliminating the fugacity parameters yr. The two
remaining equations are a) site occupation probabilities
should sum to 1, or site r has either 0 or 1 or . . . or N
fermions

N∑
i=0

〈Fi,r〉 =

N∑
i=0

〈Fi,r〉0 = 1 (14)

and b) projected charge density equals unprojected
charge density

N∑
i=0

i〈Fi,r〉 =

N∑
i=0

i〈Fi,r〉0 (15)

At half-filling, Eq. 15 will equal to N/2. Thus we are
now equipped with N+1 equations to solve for the N+1
unknowns 〈Fi,r〉 for each r given a mean-field ansatz |ψ0〉
and unrestricted variational parameters fi,r. Since Eq.

13 is non-linear, the solution strategy is not evident for
general N .

For N = 2 and assuming spatially uniform charge den-
sity, say at filling f , we have 〈F0,r〉 = 1− f + 〈F2,r〉 and
〈F1,r〉 = f − 2〈F2,r〉. 〈F2,r〉 is given by the following
quadratic equation :

〈F2,r〉2

(f − 2〈F2,r〉)2
= f22,r

〈F2,r〉20
(f − 2〈F2,r〉0)2

(16)

which can be solved readily.

For general N , let us rather employ the following strat-
egy : for each r a) find the fugacity parameter yr by
solving its governing equation (Eq. 17 below), b) Use
Eq. 12 to evaluate the various 〈Fi,r〉 which are the only
projected expectation values needed for RMFT. Firstly,
Eq. 12 satisfies Eq. 14 by definition, so we do not have
to worry about probabilities not summing to 1 which is

good. Thus, with filling f =
∑N
i=0 i〈Fi,r〉0, plugging Eq.

12 into Eq. 15 to write

N∑
i=0

(f − i)f2i,r〈Fi,r〉0x
i
r = 0 (17)

where xr = y2r gives a N th degree equation in xr for
each r. Having solved this (numerically for N > 3), we
would choose that solution for yr =

√
xr which respects

0 ≤ 〈Fi,r〉 ≤ 1 obtained through an application Eq. 12.
This might generally be the smallest root greater than
zero.

Assuming we have solved for 〈Fi,r〉 for each i,r, the
next step is to rewrite the total energy 〈H〉 in terms of
〈Fi,r〉. For this, we need the following operator identities
Eq. 18,19.

Prc†r,σPr =

(
N∑
i=0

fi,ry
i
rFi,r

)
c†r,σ

 N∑
j=0

fj,ry
j
rFj,r


→ only i = j + 1 terms contribute

=

N−1∑
i=0

fi+1,rfi,ry
2i+1
r ×

× δ(i+ 1,
∑
σ1

nr,σ1)c†r,σδ(i,
∑
σ2

nr,σ2)

=

N−1∑
i=0

fi+1,rfi,ry
2i+1
r ×

× c†r,σδ(i,
∑
σ16=σ

nr,σ1)δ(0, nr,σ)

� use c†r,σδ(0, nr,σ) = c†r,σ

Prc†r,σPr =

(N−1∑
i=0

fi+1,rfi,ry
2i+1
r δ(i,

∑
σ16=σ

nr,σ1)

)
c†r,σ

(18)
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Similarly,

Prcr,σPr =

(
N∑
i=0

fi,ry
i
rFi,r

)
cr,σ

 N∑
j=0

fj,ry
j
rFj,r


→ only i = j − 1 terms contribute

=

N∑
i=1

fi−1,rfi,ry
2i−1
r ×

× δ(i− 1,
∑
σ1

nr,σ1)cr,σδ(i,
∑
σ2

nr,σ2)

=

N∑
i=1

fi−1,rfi,ry
2i−1
r ×

× cr,σδ(i− 1,
∑
σ16=σ

nr,σ1)δ(1, nr,σ)

� use cr,σδ(1, nr,σ) = cr,σ

=

( N∑
i=1

fi−1,rfi,ry
2i−1
r δ(i− 1,

∑
σ16=σ

nr,σ1)

)
cr,σ

Prcr,σPr =

(N−1∑
i=0

fi,rfi+1,ry
2i+1
r δ(i,

∑
σ16=σ

nr,σ1)

)
cr,σ

(19)

Eq. 18,19 reduce to Wang et al expressions upon N = 2
as expected. We also note that the parenthetical factors
in Eq. 18,19 are same for both cases and can be thought
of as “renormalization” factors which dress the fermions
that comprise the unprojected state to the quasiparticles
that comprise the projected state in analogy with Fermi
Liquid theory.

For the kinetic energy we have

〈T 〉 =

〈
P
(∑

{r,r′},σ trr′c
†
r,σcr′,σ + h.c.

)
P
〉
0

〈P2〉0
→ Gutzwiller approximation

=
∑
{r,r′},σ

trr′

〈
(Prc†r,σPr)(Pr′cr′,σPr′)

〉
0

〈P2
r 〉0〈P2

r′〉0
+ h.c.

≡
∑
{r,r′},σ

trr′g
t
r,σg

t
r′,σ

〈
c†r,σcr′,σ

〉
0

+ h.c. (20)

where

gtr,σ =

N∑
i=0

fi+1,rfi,ry
2i+1
r

〈
δ(i,

∑
σ16=σ nr,σ1)

〉
0

〈P2
r 〉0

→ use Eq. 12 for each i to eliminate
〈
P2
r

〉
0

=

N∑
i=0

fi+1,ryr〈Fi,r〉
fi,r〈Fi,r〉0

×

〈
δ(i,

∑
σ16=σ

nr,σ1)

〉
0

(21)

is a renormalization factor for the quadratic hopping
terms. In the above, we are anticipating no supercon-

ducting and spin-flip mean-fields which allows us to write〈
nr,σ1c

†
r,σcr′,σ

〉
0
→Wick decompose for σ1 6= σ

= 〈nr,σ1〉0
〈
c†r,σcr′,σ

〉
0

(22)

and thus〈
f(nr,σ1, nrσ2, . . .)c

†
r,σg(nr′,σ3, nr′σ4, . . .)cr′,σ

〉
0

= 〈f(nr,σ1, nrσ2, . . .)〉0
〈
g(nr′,σ3, nr′σ4, . . .)

〉
0

〈
c†r,σcr′,σ

〉
0

(23)

where {σ1, σ2, σ3, σ4, . . .} 6= σ. The functions f ,g can be
the projection operators of Eq. 20,21 for example. To
make contact with the expressions by Wang et al we can
remove yr by the use of an implication of Eq. 12

yr =

√
〈Fi,r〉0
〈Fi+1,r〉0

〈Fi+1,r〉
〈Fi,r〉

f2i,r
f2i+1,r

(24)

which leads to

gtr,σ =

N∑
i=0

√
〈Fi,r〉
〈Fi,r〉0

〈Fi+1,r〉
〈Fi+1,r〉0

×

〈
δ(i,

∑
σ16=σ

nr,σ1)

〉
0

(25)

This expression reduces to the expression of Wang et al
(Eq. 11) for N = 2 as expected. In the above it is un-
derstood that we may have a non-zero chemical potential
µ = trr.

For the interaction energy we have

〈V 〉 =

r∑
{P(σ1,σ2)}

Ur
〈Pnr,σ1nr,σ2P〉0

〈P2〉0

→ Gutzwiller approximation

=

r∑
{P(σ1,σ2)}

Ur
〈Prnr,σ1nr,σ2Pr〉0

〈P2
r 〉0

→ terms commute freely

=

r∑
{P(σ1,σ2)}

Ur

〈
nr,σ1nr,σ2P2

r

〉
0

〈P2
r 〉0

=

r∑
{P(σ1,σ2)}

Ur

N∑
i=0

f2i,ry
2i
r

〈nr,σ1nr,σ2Fi,r〉0
〈P2

r 〉0

→ use Eq. 12 for each i to eliminate
f2i,ry

2i
r

〈P2
r 〉0

〈V 〉 =

r∑
{P(σ1,σ2)}

Ur

N∑
i=0

〈nr,σ1nr,σ2Fi,r〉0
〈Fi,r〉0

〈Fi,r〉 (26)

The factors 〈nr,σ1nr,σ2Fi,r〉0/〈Fi,r〉0 are understood as
the ratio of probability for site r having σ1 and σ2
fermion conditioned on total occupation being i to the
probability for site r having total occupation being i in
the unprojected state |ψ0〉. These are 0 obviously for



5

i = 0 or 1. For N = 2 Eq. 26 reduces to the expression
of Wang et al

∑
r Ur〈F2,r〉 as expected.

By an application of Eq. 23, we can simplify
〈nr,σ1nr,σ2Fi,r〉0 as

〈nr,σ1nr,σ2Fi,r〉0

=

〈
nr,σ1nr,σ2δ(i,

∑
σ

nr,σ)

〉
0

=

〈
nr,σ1nr,σ2δ(i− 2,

∑
σ 6={σ1,σ2}

nr,σ)

〉
0

= 〈nr,σ1〉0〈nr,σ2〉0

〈
δ(i− 2,

∑
σ 6={σ1,σ2}

nr,σ)

〉
0

(27)

Thus another way to write 〈V 〉 is as

〈V 〉 =

r∑
{P(σ1,σ2)}

Ur g
U
r,σ1,σ2〈nr,σ1〉0〈nr,σ2〉0 (28)

where

gUi,r,σ1,σ2 =

N∑
i=0

〈Fi,r〉
〈Fi,r〉0

×

〈
δ(i− 2,

∑
σ 6={σ1,σ2}

nr,σ)

〉
0

(29)

is a renormalization factor for the quartic interaction
terms.

If SU(N) symmetry is unbroken, then we can evaluate
the 〈nr,σ1nr,σ2Fi,r〉0/〈Fi,r〉0 factors as they will become
independent of precise value of σ1 and σ2 owing to the
unbroken SU(N) symmetry. They will be

〈nr,σ1nr,σ2F0,r〉0/〈F0,r〉0 = 0

〈nr,σ1nr,σ2F1,r〉0/〈F1,r〉0 = 0

〈nr,σ1nr,σ2F2,r〉0/〈F2,r〉0 =
1

(N, 2)

〈nr,σ1nr,σ2F3,r〉0/〈F3,r〉0 =
(N − 2, 1)

(N, 3)

〈nr,σ1nr,σ2F4,r〉0/〈F4,r〉0 =
(N − 2, 2)

(N, 4)

...

〈nr,σ1nr,σ2Fi,r〉0/〈Fi,r〉0 =
(N − 2, i− 2)

(N, i)

...

〈nr,σ1nr,σ2FN,r〉0/〈FN,r〉0 =
(N − 2, N − 2)

(N,N)
= 1 (30)

Therefore

〈V 〉 =
∑
r

Ur

N∑
i=2

(N, 2) (N − 2, i− 2)

(N, i)
〈Fi,r〉 (31)

if SU(N) symmetry is unbroken. Can we make some in-
ference about the large-N limit from the above structure
in the combinatorial factors, perhaps by use of Stirling
approximation ?

B. Implementation (also applicable to unprojected
MFT)

So now it remains to find the mean-field ansatz |ψ0〉
and variational parameters fi,r that minimizes 〈H〉 =
〈T 〉+ 〈V 〉. As is usual for mean-field theories, the struc-
ture of 〈H〉 → (trr′ g

t
rg
t
r′

〈
c†rcr′

〉
0

+ h.c.) +Ur g
U
r 〈n〉0〈n〉0

can suggest a self-consistent iterative scheme to find the
variational ground state as we learn in textbooks. An-
other way to do the variational procedure is to do an
actual minimization of the total mean-field energy over
the mean-field parameters (|ψ0〉and{fi,rw}). We de-
scribe the two approaches below. In the following,
if we neglect the steps involving the evaluation
of the renormalization factors (gtr and gUr ) and
the variation of the parameters characterizing the
Gutzwiller projection ({fi,rw}), then we get an
unprojected MFT scheme without any Gutzwiller
projection.

1. Self-Consistent Eigenvalue Problem

• 1) Start with an initial mean-field ansatz for the
ground state |ψ0〉 and initial variational parameters
{fi,r}0 and their small variations written schemat-
ically as {dfi,r}.

• 2) Given a |ψ0〉, we can evaluate
〈
c†r,σcr′,σ

〉
0
, 〈nr,σ〉0

and 〈Fi,r〉0. Given a set of {fi,r}0, we can evaluate
yr by solving Eq. 17. Thus we can compute the
set of {〈Fi,r〉} by using Eq. 12. Thus we can com-
pute the renormalization factors gtr,σ and gUr,σ1,σ2
by using Eq. 25 and Eq. 29 respectively.

• 3) Solve the mean-field decoupled single-particle
HMFT for each flavor σ to construct a new many-
body ground state |ψ1〉 where

HMFT =
∑
{r,r′},σ

trr′g
t
r,σg

t
r′,σ c†r,σcr′,σ + h.c.

+
∑
r,σ

Ur

∑
σ′ 6=σ

gUr,σ,σ′〈nr,σ′〉0

nr,σ (32)

• 4) For the new many-body ground state |ψ1〉, we
can evaluate 〈H〉 and the various d〈H〉/dfi,r. Since
we desire d〈H〉/dfi,r = 0 and 〈H〉 to go towards the
minimum, vary the variational parameters {fi,r}
in direction of decreasing 〈H〉 by {dfi,r} to get a
new set of variational parameters {fi,r}1. This step



6

might require some computing finesse. We we can
expect the landscape of 〈H〉 as a function of {fi,r}
to be fairly simple (especially for r independent
situations) since the Hamiltonian is not especially
complicated from this minimization point of view.
Essentially the {fi,r} are just serving to control the
site occupations to account for the competition be-
tween the kinetic energy due to hopping terms and
potential energy due to the interaction terms.

• 5) Redo from Step 2) with |ψ1〉 and {fi,r}1. Iter-
ate till convergence is achieved, i.e. |ψ1〉 = |ψ0〉
and {fi,r}0 = {fi,r}1. P|ψ0〉 is the final variational
ground state given by RMFT, where the projection
is of course done with the converged set of varia-
tional parameters. P =

∏
r Pr is given by Eq. 7.

2. Minimization over all MFT parameters

In the previous subsubsection, we only minimized over
the variational parameters associated with the Gutzwiller
projection {fi,r} and solved for |ψ0〉 in a self-consistent
way. In this subsubsection, we describe how to convert
the later part also into a minimization procedure which
is desirable from computer implementation point of view.

• 1) Start with an initial mean-field ansatz for the
ground state |ψ0〉 and initial variational parameters
{fi,r}0. When we say a mean-field ansatz for the
ground state |ψ0〉, what we rather mean is a set
of parameters like χr,r′,σ ≡

〈
c†r,σcr′,σ

〉
0

which can
include notationally on-site flavour density nr,σ ≡
χr,r,σ ≡ 〈nr,σ〉0, etc. (neglecting superconducting
and spin-flip type of mean-fields for now) that give
a set of single particle sets from which a many-
body ground state (or thermal state) is constructed
as a Slater determinant for our fermionic case of
interest. We also have their small variations written
schematically as {dχr,r′,σ} and {dfi,r}.

• 2) Given a |ψ0〉 characterized through a set of
parameters {χr,r′,σ}0, we can obtain

〈
c†r,σcr′,σ

〉
0
,

〈nr,σ〉0 (trivially) and 〈Fi,r〉0. Given a set of
{fi,r}0, we can evaluate yr by solving Eq. 17. Thus
we can compute the set of {〈Fi,r〉} by using Eq. 12.
Thus we can compute the renormalization factors
gtr,σ and gUr,σ1,σ2 by using Eq. 25 and Eq. 29 re-
spectively.

• 3) Solve the mean-field decoupled single-particle
HMFT for each flavor σ to construct a new many-
body ground state |ψ1〉 where

HMFT =
∑
{r,r′},σ

trr′g
t
r,σg

t
r′,σ c†r,σcr′,σ + h.c.

+
∑
r,σ

Ur

∑
σ′ 6=σ

gUr,σ,σ′〈nr,σ′〉0

nr,σ (33)

• 4) For the new many-body ground state |ψ1〉, we
can now evaluate 〈H〉 simply by summing up the
lowest energy levels up to the desired correct fill-
ing. Note this filling is same both at projected
and unprojected levels. Doing this sum is triv-
ial from computer implementation point of
view, since after evaluation of the single-
particle eigenvalues from Step 3), it remains
to just sort them and add up the lowest val-
ues up to the correct total filling. Further-
more, this summation can be easily generalized
to a finite-temperature situation involving Fermi-
Dirac distributions. Thus we can evaluate the var-
ious d〈H〉/dχr,r′,σ and d〈H〉/dfi,r. Since we desire
d〈H〉/dχr,r′,σ = 0 and d〈H〉/dfi,r = 0 and 〈H〉 to
go towards the minimum, vary the variational pa-
rameters {χr,r′,σ} and {fi,r} in direction of decreas-
ing 〈H〉 by {dχr,r′,σ} and {dfi,r} to get a new set of
variational parameters {χr,r′,σ}1 and {fi,r}1. This
step might require some computing finesse. We can
again expect the landscape of 〈H〉 as a function
of {χr,r′,σ} and {fi,r} to be not too extra compli-
cated compared to the previous subsubsection (es-
pecially for situations with simple enough spatial
dependence).

• 5) Redo from Step 2) with {χr,r′,σ}1 and |ψ1〉
and {fi,r}1. Iterate till convergence is achieved,
i.e. {χr,r′,σ}1 = {χr,r′,σ}0 and {fi,r}0 = {fi,r}1.
P|ψ0〉 is the final variational ground state given
by RMFT, where the projection is of course done
with the converged set of variational parameters.
P =

∏
r Pr is given by Eq. 7.
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