
EFT Lecture notes 4 R. Hill Fall 2017

Renormalization: operator renormalization and log summation

In practical applications, we often wish to perform perturbation theory for a process occuring at a low scale (µ),
using a theory defined at a high scale (Λ� µ). Provided that couplings are vanishingly small, we may proceed
with the usual perturbation theory program. However, in practice, the large ratio of scales can invalidate a
perturbative treatment. For example, in our analysis of λφ4 theory, the product λ(Λ) log(Λ/µ) may become
of order unity, even if λ(Λ) is small. To obtain sensible predictions we must “resum” such logarithms. A
similar situation arises when applying perturbative QCD to processes at a scale that is low compared to
high-energy collisions or to the electroweak scale; here, terms αs(µ) log(Λ/µ) must again be summed to obtain
sensible predictions. The renormalization program is usually phrased in terms of effective field theory, typically
involving three steps: 1) constructing an effective theory by integrating out degrees of freedom (high energy
modes, massive fields, or antiparticle components of heavy fermions); 2) matching full theory to effective
theory; and 3) renormalization of couplings in the effective theory to the low scale of interest.

1 Effective operators

As a simple example of effective operators, consider two massless fermions interacting with a scalar field and
abelian gauge field,

L =

2∑
i=1

ψ̄i(i∂/+ gA/)ψi −
1

4
(Fµν)2 +

1

2
(∂µφ)2 − M2

2
φ2 + κφ

2∑
i=1

ψ̄iψi . (1)

(This is a toy example for low-energy Fermi theory of weak interactions, with φ playing the role of massive
W± and Z0 bosons, the photon playing the role of gluons and ψi the role of quarks and leptons.) At energies
small compared to M we may integrate out φ. The effective Lagrangian induced by φ exchange is

Leff = ψ̄(i∂/+ gA/)ψ − 1

4
(Fµν)2 + c1ψ̄1ψ1ψ̄2ψ2 + . . . , (2)

where we focus on interactions mediating ψ1-ψ2 scattering (there are also ψ1-ψ1 and ψ2-ψ2 interactions) and
the tree level matching condition betweeen theories (1) and (2) is

c1 =
κ2(Λ)

M2
+ . . . . (3)

We may determine the coefficients of operators in the effective lagrangian by matching full and effective theories
for arbitrary low-energy external states.

Considering (1) defined with regulator Λ, all couplings refer to this renormalization scale. To account for
possible large logarithms in perturbation theory, we should analyze the behavior of (2) under renormalization.
Thus consider as before, the process of integrating over a momentum shell. The four point function in the full
theory (including modes up to Λ) is

(Z
1
2

full)
4iMfull = ic(Λ)(Z

1
2

full)
4

{
1⊗ 1 + 2g2(Λ)I(Λ, λ)

[
d1⊗ 1 +

2

d
σµν ⊗ σµν

]}
(4)

In the effective theory, obtained by integrating out modes between bΛ and Λ,

(Zeff)
1
2 )4iMeff = ic(bΛ)(Zeff)

1
2 )4

{
1⊗ 1 + 2g2(bΛ)I(bΛ, λ)

[
d1⊗ 1 +

2

d
σµν ⊗ σµν

]}
(5)

The Z factor is familiar from QED,

1 − Z−1 =
d

dp/
Σ(p)

∣∣∣∣
p=0

=
d

dp/

∣∣∣∣
p=0

[
− ig2

∫
ddL

(2π)d
γµ(L/+ p/)γµ

(L+ p)2(L2 − λ2)

]
= −g2 (d− 2)2

d
I(Λ, λ) (6)



So far expressions refer to arbitrary spacetime dimension d, for later, more elegant, treatment in dimensional
regularization. Specializing to d = 4, the basic integral we require is

I(Λ, λ) ≡ −i
∫

d4L

(2π)4
|LE |<Λ

1

L2

1

L2 − λ2
=

2

(4π)2

∫ Λ

0

dL
L

L2 + λ2
=

1

16π2
log

Λ2 + λ2

λ2
=

1

16π2

(
log

Λ2

λ2
+O(λ2)

)
,

(7)
where we have regulated with a photon mass λ. Finally, equating full and effective theories we find the
conditions,

c1(bΛ) = c1(Λ)

[
1 + 6

g2(Λ)

16π2
log

1

b2

]
+ . . . ,

c2(bΛ) = c1(Λ)

[
g2(Λ)

16π2
log

1

b2

]
+ . . . . (8)

In particular, we require the inclusion of a new operator in (2) in order to perform the matching,

O1 = ψ̄1ψ1ψ̄2ψ2 ,

O2 = ψ̄1σ
µνψ1ψ̄2σµνψ2 . (9)

Operator O2 has been “induced” by renormalization.

2 Anomalous dimension

Having induced the opeator O2, in succeeding renormalization steps we must also consider its effects. In fact,
we find that yet one further operator is induced,

O3 = ψ̄1γ5ψ1ψ̄2γ5ψ2 . (10)

Exercise: Give a symmetry reason why the basis O1, O2, O3 is complete.

Repeating the momentum-shell integration step, we find the amplitude for arbitrary ci,

(Z
1
2

ψ )4M =
[
1− g2I(Λ, λ)

]2{
c11⊗ 1 + c2σ

µν ⊗ σµν + c3γ5 ⊗ γ5

+ g2I(Λ, λ)

[
c1
(
8 1⊗ 1 + σµν ⊗ σµν

)
+ c2

(
24 1⊗ 1 + 24 γ5 ⊗ γ5

)
+ c3

(
8 γ5 ⊗ γ5 + σµν ⊗ σµν

)]
(11)

Equating this expression for theories with cutoff Λ and bΛ, we find the generalization of (8)

c1(bΛ) = c1(Λ)

[
1 + 6

g2(Λ)

16π2
log

1

b2

]
+ 24c2(Λ)

g2(Λ)

16π2
log

1

b2
,

c2(bΛ) = c1(Λ)
g2(Λ)

16π2
log

1

b2
+ c2(Λ)

[
1− 2

g2(Λ)

16π2
log

1

b2

]
+ c3(Λ)

g2

16π2
log

1

b2
,

c3(bΛ) = 24c2(Λ)
g2(Λ)

16π2
log

1

b2
+ c3(Λ)

[
1 + 6

g2(Λ)

16π2
log

1

b2

]
(12)

Identifying µ = bΛ, we find the differential equations,

d

d logµ
~c(µ) = γ̂T~c(µ) , (13)

where γ̂ is the “anomalous dimension” matrix (the transpose is conventional: γ̂ with a minus sign appears as
the anomalous dimension of operators versus coefficients), which to leading order in g2 is

γ̂T = − α

2π

 6 24 0
1 −2 1
0 24 6

 . (14)



In terms of the combinations

c′1 = c1 − c3 , c′2 = c1 + c3 − 12c2 , c′3 = c1 + c3 + 4c2 , (15)

the anomalous dimension matrix is diagonal,

γ̂′ = − α

2π
diag(6,−6, 10) . (16)

For each eigenvalue, we write the anomalous dimension as an expansion in α,

γ′ = γ0
α

4π
+ . . . , (17)

Recall the running of the electromagnetic coupling,

dα

d logµ
=
β0

2π
α2 + . . . , (18)

so that the coefficient eigenvalues obey

dc

c
= γd logµ = γ

dα

β
=

γ0

2β0

dα

α
+ . . . , =⇒ c(µ) = c(Λ)

[
α(µ)

α(Λ)

] γ
2β0

+ . . . . (19)

When the right hand side of this equation is expanded in either α(µ) or α(Λ), powers of log(Λ/µ) appear. In
applications involving the QCD analog of this example, such logarithms can overcome the suppression by αs,
the strong coupling analog of α, and must be summed in this way to obtain meaningful results.

2.1 Computation in dimensional regularization

Recall from our study of QED renormalization in dimensional regularization in minimal subtraction, that we
may compute beta functions and related quantities by isolating 1/ε UV divergences. For the β function, we

have gbare = Zgµ
εg(µ), where Zg = Z

− 1
2

A , with ZA the wavefunction renormalization factor of the photon field,
as determined by the 1PI photon two-point function,

Zonshell
A = 1 +

g2
bare

(4π)2
[(4π)εΓ(1 + ε)]m−2ε

bare

(
− 4

3ε
+

2

3

)
,

ZMS
A = 1 +

g2

(4π)2

(
− 4

3ε

)
. (20)

Let us write,

Zg = 1 +
1

ε
Zg,1 +

1

ε2
Zg,2 + . . . . (21)

Then because bare quantities are independent of µ,

d

d logµ
gbare = 0 =⇒ β(g, ε) = −εg(1 + Z−1

g g
∂

∂g
Zg)
−1 , (22)

where

β(g, ε) ≡ d

d logµ
g . (23)

Since Zg − 1 contains only powers of 1/ε, the finiteness of limε→0 β(g, ε) implies

β(g) ≡ lim
ε→0

β(g, ε) = g2 ∂

∂g
Zg,1 = −1

2
g2 ∂

∂g
ZA,1 =

g3

(4π)2

(
4

3

)
+ . . . , (24)

where we have used (20). We thus find,

dα

d logµ
=

g

2π
β(g) =

2α2

3π
≡ −β0

2π
α2 , (25)

where β0(QED) = −4/3.



Similarly for the µ dependence of renormalized operators, let us write

Obare, i = ZijO(µ)j , (26)

so that
d

d logµ
Oi = −γijOj , γ̂ ≡ Ẑ−1

O
d

logµ
ẐO , (27)

Exercise: Derive the expression for γ in terms of Z.

In dimensional regularization with minimal subtraction, we have

ZO = 1 +
1

ε
ZO,1 +

1

ε2
ZO,2 + . . . , (28)

and hence by an argument similar to that for the beta function, we have to all orders in perturbation theory,

γ̂ = −g ∂
∂g
ZO,1 . (29)

Exercise: Derive (29), using (22), (28) and (29).


