
EFT Lecture notes 2 R. Hill Fall 2017

1 Path integrals introduction

The basic object that we analyzed in perturbation theory was

G(x1, x2, . . . ) = 〈vac|T{φ(x1)φ(x2) . . . }|vac〉

=
〈0|T{φI(x1)φI(x2) . . . exp

[
i
∫
ddyLI [φI(y)]

]
}|0〉

〈0|T{exp
[
i
∫
ddyLI [φI(y)]

]
}|0〉

(1)

The path integral approach employs the ansatz

G(x1, x2, . . . ) =

∫
[dφ]φ(x1)φ(x2) . . . exp

[
i
∫
ddyL[φ(y)]

]∫
[dφ] exp

[
i
∫
ddyL[φ(y)]

] . (2)

Our first tasks will be to define the formal integration measure

[dφ] ∼
∏
x

dφ(x) , (3)

and to introduce appropriate boundary conditions for which we can justify the identification (1) and (2).
We will then proceed to define gauge theories based on the path integral approach. This lecture reviews
two regularizations of the path integral, first as a discretization in timeslices, then as an expansion in basis
functions.

1.1 0 + 1-dimensional example

To make contact with familiar quantum mechanical normalizations it is useful to consider the case of a scalar
field in 0 + 1 dimensions, with the field x(t) representing, e.g., the position of a structureless particle.

1.1.1 Hilbert space

Thus, consider a quantum mechanical system described by canonical coordinate x and conjugate momentum
p. Viewed as operators on Hilbert space,

[x̂, p̂] = i , [x̂, x̂] = 0 , [p̂, p̂] = 0 , (4)

and the Heisenberg picture operators

x̂(t) = eiĤtx̂e−iĤt , p̂(t) = eiĤtp̂e−iĤt , (5)

obey1

˙̂x =
∂H

∂p
,

˙̂p = −∂H
∂x

. (6)

We may as usual introduce a basis of x eigenstates,

x̂|x〉 = x|x〉 , 1 =

∫ ∞
−∞

dx|x〉〈x| , 〈x′|x〉 = δ(x′ − x) , (7)

or a basis of p eignenstates,

p̂|p〉 = p|p〉 , 1 =

∫ ∞
−∞

dp|p〉〈p| , 〈p′|p〉 = δ(p′ − p) . (8)

1For simplicity, and since most of the field theories we will consider have this property, we suppose that ∂H/∂p and ∂H/∂x
do not suffer ordering ambiguities. The general case can be treated in detail.



Using the commutation relations, we have for any number a,

x̂
(
eip̂a|x〉

)
= eip̂a(x̂− a)|x〉 = (x− a)

(
eip̂a|x〉

)
, (9)

so that we may identify
eip̂a|x〉 = |x− a〉 . (10)

It follows that

〈x|p〉 =
eipx√

2π
. (11)

We define basis states having definite position or momentum at time t as

x̂(t)|x; t〉 = x|x; t〉 , p̂(t)|p; t〉 = p|p; t〉 . (12)

The quantity 〈x′; t′|x; t〉 is thus identified as the amplitude to find a particle at position x′ at time t′ if it was
at position x at time t.

Exercise: Show that |x;T 〉 is the Schrodinger picture state at time t = −T corresponding to the Heisenberg
state |x〉 at time t = 0. Show the relations

〈x′; t|x; t〉 = δ(x′−x) , 〈p′; t|p; t〉 = δ(p′−p) ,
∫
dx|x; t〉〈x; t| = 1 ,

∫
dp|p; t〉〈p; t| = 1 , 〈x; t|p; t〉 =

eip·x√
2π

.

(13)

1.1.2 Time slices

As an exact relation,

〈x′; t+ dt|x; t〉 = 〈x′; t|e−iĤdt|x; t〉 =

∫
dp〈x′; t|e−iĤdt|p; t〉〈p; t|x; t〉 . (14)

We notice that
Ĥ(x̂, p̂) = Ĥ(x̂(t), p̂(t)) , (15)

and we assume that Ĥ is expressed with all x̂’s to the left and all p̂’s to the right. Then to first order in dt,

〈x′; t|e−iĤdt|p; t〉 = e−iH(x′,p)dt〈x′; t|p; t〉+O(dt2) , . (16)

and

〈x′; t+ dt|x; t〉 ==

∫
dp

2π
eip(x

′−x)−iH(x′,p)dt +O(dt2) . . (17)

For a finite time interval, let us introduce N time slices,

〈x′; t′|x; t〉 =

∫
dx1 . . . dxN 〈x′; t′|xN ; tN 〉〈xN ; tN |xN−1; tN−1〉 . . . 〈x1; t1|x; t〉 , (18)

identifying
t′ − t = (N + 1)dt , x0 = x , xN+1 = x′ . (19)

Employing (17) at each timeslice, we then have

〈x′; t′|x; t〉 =

∫ N∏
i=1

dxi

N∏
j=0

dpj
2π

exp

[N+1∑
k=1

ip(xk − xk=1)− iH(xk, pk)dt

]
+O(Ndt2) . (20)

With dt ∼ 1/N , the result becomes exact as N →∞.



1.1.3 Lagrangian formulation

The field theories of interest will generally have the form (extended from 0 + 1 to d dimensions, x→ φ(x))

H =
1

2
p2 + V (x) , (21)

so that each pj integration is of the form∫
dpj
2π

exp

[
i

(
−1

2
p2jdt+ pj(xj+1 − xj)

)]
=

√
1

2πidt
exp

[
i(xj+1 − xj)2

2dt

]
, (22)

where we complete the square and perform the remaining gaussian integral. Using this result for each time
slice results in

〈x′; t′|x; t〉 = lim
N→∞

(
1

2πidt

)N+1
2
∫ N∏

i=1

dxi exp

[
i

N∑
j=0

(
(xj+1 − xj)2

2dt2
− V (xj)

)
dt

]
. (23)

In the extenstion to quantum field theory we will not bother keeping track of the (divergent as dt → 0)
normalization factor.2

1.1.4 Continuum limit

In the limit of large N we formally write

〈x′; t′|x; t〉 =

∫
x(t) = x

x(t′) = x′

∏
t

dx(t) exp

[
i

∫ t′

t

dt

(
1

2
ẋ2 − V (x)

)
dt

]
, (24)

where the quantity being integrated in the exponent may be identified with the lagrangian,

1

2
ẋ2 − V (x) = L . (25)

The “regularization” (23) is one way to interpret (24) (and in fact is the method by which we derived (24)
starting from canonical operators in quantum mechanical Hilbert space). Another regularization is obtained
by expanding in a basis of functions on the chosen time interval, taking the expansion coefficients as integration
variables. Consider for definiteness the harmonic oscillator problem,

V (x) =
1

2
ω2x2 , (26)

on the time interval 0 < t < T , with x(0) = x(T ) = 0. We may identify∫ T

0

dt

(
1

2
ẋ2 − V (x)

)
≡ 1

2
〈x|A|x〉 , (27)

where

A = −
(
d

dt

)2

− ω2 . (28)

Consider the orthonormal basis of functions satisfying the chosen boundary conditions,

xn(t) =

√
2

T
sin

πnt

T
, Axn = λnxn , λn =

π2n2

T 2
− ω2 . (29)

Thus

x(t) =

∞∑
n=1

cnxn(t) =⇒ 1

2
〈x|A|x〉 =

1

2

∑
n

c2nλn . (30)

2This factor depends on the regularization scheme, which must be specified. For many quantum mechanical problems (e.g., the
Schrodinger Coulomb system) most observables are independent of UV regulator, and it makes sense to retain a rigid connection
to the normalizations of the familiar Hilbert space formulation as in (23).



With the identification

[dx] =
∏
t

dx(t) ∝
∏
n

dcn√
2π
≡ [dc] , (31)

we have ∫
[dx] exp

[
− i

2
〈x|A|x〉

]
∝
∏
n

∫
dcn√

2π
exp

[
−1

2
(iλn)c2n

]
=
∏
n

(iλn)−
1
2 = (detiA)−

1
2 . (32)

The ∝ in (32) implies that we have not determined the overall normalization of the measure to rigidly connect
with the canonical quantum mechanics normalization. We may however compute quantities for which this
normalization drops out. For example, consider,∫

[dx]x(t1)x(t2) exp
[
− i

2 〈x|A|x〉
]∫

[dx] exp
[
− i

2 〈x|A|x〉
] =

∑
n,m

xn(t1)xm(t2)

∫
[dc]cncm exp[

[
− i

2 〈x|A|x〉
]∫

[dc] exp[
[
− i

2 〈x|A|x〉
]

=
∑
n,m

xn(t1)xm(t2)δnm
∂

∂iλn
log det(iA)

=
∑
n

xn(t1)xn(t2)

iλn
(33)

Consider for example,

t1 =
T

2
+ τ , t2 =

T

2
, τ/T → 0 . (34)

In this limit, we have (α = ωT )

∞∑
n=1

xn(t1)xn(t2)

iλn
=

1

πω

∞∑
n=1

α

α2 + n2
[1− (−1)n]→ 1

2ω
. (35)

We may identify this as the free particle correlation function in 0 + 1 dimensions,

〈0|T{x(τ)x(0)}0〉 =

∫
dp0
2π

e−ip0t

p20 − ω2 + i0
=

1

2ω
. (36)

Exercise: Compute 〈x′; t′|x; t〉 from (24) for the case x = 0, t = 0, and general x′ = X, t′ = T . Hint: Write
x(t) as the sum of a classical solution and perturbation,

x(t) = xc(t) +

∞∑
n=1

cnxn(t) , (37)

where

xc(t) = X
sinωt

sinωT
. (38)

By examining the free (ω = 0) case you should find that the overall normalization consistent with (7) follows
from

[dx] =

(
1

2πiT

) 1
2 ∏

n

(
1

2πiT

) 1
2 nπ√

T
dcn . (39)

The same result may be obtained from (23) by evaluating the N -dimensional gaussian integral, then taking
N →∞.


