
EFT Lecture notes 1 R. Hill Fall 2017

1 Recap of scalar, spinor and vector fields

From last quarter, recall that we have constructed scalar, spinor and vector fields. To avoid complications
associated with gauge fields, consider first the case of massive vector fields.

1.1 Real scalar

From the Lagrangian,

L =
1

2
(∂µφ)2 − 1

2
m2φ2 + . . . (1)

we introduce the interaction picture field

φ(x) =

∫
d3p

(2π)3
1√
2p0

(
e−ip·xap + eip·xa†p

) ∣∣∣∣
p0=Ep

, (2)

with Ep =
√
m2 + p2 and annihilation and creation operators obeying

[ap, a
†
p′ ] = (2π)3δ3(p− p′) , [ap, ap′ ] = 0 , [a†p, a

†
p′ ] = 0 . (3)

Exercise: Show that (2) satisfies the equation of motion derived from (1). Derive the conjugate momentum
π(x, t) and show that at equal times [φ(x, t), π(y′, t)] = iδ3(x− y).

1.2 Complex scalar

For two real scalars with equal mass,

L =

2∑
i=1

1

2
(∂µφi)

2 − 1

2
m2(φi)

2 + . . . (4)

we may expand each φi as in (2). Introducing the complex combinations

Φ(x) =
1√
2

(φ1 + iφ2) , Φ∗(x) =
1√
2

(φ1 − iφ2) (5)

we may write
L = (∂µΦ)∗(∂µΦ)−m2Φ∗Φ + . . . (6)

and expand the interaction picture field

Φ(x) =

∫
d3p

(2π)3
1√
2p0

(
e−ip·xap + eip·xb†p

) ∣∣∣∣
p0=Ep

, (7)

where ap = (a1,p + ia2,p)/
√

2, bp = (a1,p − ia2,p)/
√

2,

[ap, a
†
p′ ] = (2π)3δ3(p− p′) , [bp, b

†
p′ ] = (2π)3δ3(p− p′) , (8)

and all other commutators vanish.

Exercise: Show that (7) satisfies the equation of motion derived from (6). Derive the conjugate momentum
Π(x, t) and show that at equal times [Φ(x, t),Π(y′, t)] = iδ3(x− y).



1.3 Weyl fermion

The lagrangian for a fermion field transforming irreducibly under Lorentz transformations is

L = χ†iσ̄ · ∂χ+
m

2
(χT iσ2χ− χ†iσ2χ∗) + . . . . (9)

The field in the interaction picture may be expanded

χ(x) =

∫
d3p

(2π)3
1√
2p0

(
e−ip·x

2∑
s=1

ap,s
√
p · σξs + eip·x

2∑
s=1

a†p,s
√
p · σ(−iσ2ξ∗s )

)∣∣∣∣
p0=Ep

, (10)

where ξs are a basis of two-component spinor wavefunctions, and the annihilation and creation operators
satisfy anticommutation relations,

{ap,s, a†p′,s′} = δss′(2π)3δ3(p− p′) , {ap,s, ap′,s′} = 0 , {a†p,s, a
†
p′,s′} = 0 . (11)

Here σµ = (1,σ) and σ̄µ = (1,−σ).

Exercise: Show that (10) satisfies the equation of motion derived from (9). Derive the conjugate momentum
π(x, t) and show that at equal times {χ(x, t), π(y′, t)} = iδ3(x− y).

1.4 Dirac fermion

Consider two Weyl fermions of equal mass,

L =

2∑
i=1

χ(i)†iσ̄ · ∂χ(i) +
m

2
(χ(i)T iσ2χ(i) − χ(i)†iσ2χ(i)∗) . (12)

and define the linear combinations,

ψL =
1√
2

(χ(1) + iχ(2)) , ψ′L =
1√
2

(χ(1) − iχ(2)) . (13)

If we further introduce
ψR = iσψ′∗L , (14)

and collect ψL and ψR into

Ψ =

(
ψL
ψR

)
, (15)

the lagrangian (12) becomes
L = Ψ̄(i∂/ −m)Ψ , (16)

where p/ = γµpµ, in the basis of Dirac matrices

γµ =

(
0 σµ

σ̄µ 0

)
, (17)

Exercise: Verify that (16) is equivalent to (12).

Finally, we may expand

Ψ(x) =

∫
d3p

(2π)3
1√
2p0

(
e−ip·x

2∑
s=1

ap,sus(p) + eip·x
2∑
s=1

b†p,svs(p)

)∣∣∣∣
p0=Ep

, (18)

where ap,s = (a
(1)
p,s + ia

(2)
p,s)/

√
2, bp,s = (a

(1)
p,s − ia(2)p,s)/

√
2, and

us(p) =

( √
p · σξs√
p · σ̄ξs

)
, vs(p) =

( √
p · σ(−iσ2ξ∗s )

−
√
p · σ̄(−iσ2ξ∗s )

)
. (19)



The annihilation and creation operators satisfy anticommutation relations,

{ap,s, a†p′,s′} = δss′(2π)3δ3(p− p′) , {bp,s, b†p′,s′} = δss′(2π)3δ3(p− p′) , (20)

with all other anticommutators vanishing.

Exercise: Show that (18) satisfies the equation of motion derived from (16). Derive the conjugate momentum
Π(x, t) and show that at equal times {Ψ(x, t),Π(y′, t)} = iδ3(x− y).

1.5 (Massive) vector

From the lagrangian

L = −1

4
(Fµν)2 +

λ2

2
AµA

µ , (21)

we introduce the interaction picture field,

Aµ(x) =

∫
d3p

(2π)3
1√
2p0

(
e−ip·x

3∑
s=1

ap,sε
µ
s (p) + eip·x

3∑
s=1

a†p,sε
µ
s (p)∗

)∣∣∣∣
p0=Ep

, (22)

2 Perturbation theory

Using LSZ reduction, physical S-matrix elements may be extracted from the correlation functions (here focusing
on the real scalar field case),

〈vac|T{φ(x1)φ(x2) . . . }|vac〉 . (23)

An essential formula for perturbative quantum field theory is the relation of the above correlators to an
expansion involving interaction picture fields,

〈vac|T{φ(x1)φ(x2) . . . }|vac〉 =
〈0|T{φI(x1)φI(x2) . . . exp

[
i
∫
ddxLI(x)

]
}|0〉

〈0|T{exp
[
i
∫
ddxLI(x)

]
}|0〉

, (24)

where |0〉 is the free vacuum, φI(x) is the interaction picture field expressed in terms of creation and annihilation
operators ( (2) or in general also (7), (10), (18) ) and LI(x) is the interaction lagrangian. In the absence of
constraints (e.g., for the massive vector case where A0 acts as an auxiliarly field) LI is the same function of
φI(x) as the full lagrangian is of φ(x).

The relation (24) may be expanded in powers of small couplings appearing in LI . Upon (anti-) commuting
all ap’s to the right and all a†p’s to the left, the result is the sum of contractions (since ap|0〉 = 0 ) formalized
as Wick’s theorem,

〈0|T{φ(x1)φ(x2)φ(x3)φ(x4) . . . }|0〉 =
[
φ(x1)φ(x2)φ(x3)φ(x4) . . .

]
+ . . . , (25)

where

φ(x1)φ(x2) = 〈0|T{φ(x1)φ(x2)}|0〉 ≡ DF (x1, x2) . (26)

The correlation functions (23) are thus reduced to integrals over sums of products of DF (x, y). The various
contractions are conveniently expressed as Feynman rules. It is often easiest to go back to the starting point
(24) when working out combinatorial factors.


